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The problem of extraction of  a substance in a column is considered for the case of solid spherical particles with the 

polydisperse composition when mass transfer is controlled by the liquM phase resistance and the distribution coeffi- 

cient of  the extractable substance is constant. For the exponential size-particle distribution we present the results of  

the corresponding calculation of  the extraction degree. It is shown that for the normal distribution the calculation of  

the extraction degree can be performed without reference to polydispersity of the particles with an accuracy sufficient 

for engineering computations. The calculations were carried out in the range of  values for the volume fraction of  the 

particles from 0 to 0.666. 

The problem concerning the calculation of the extraction degree of a substance from a granular material in a column by 

an absorbing solution when mass transfer is controlled by the liquid phase resistance, and the distribution coefficient of the 

extractable substance is constant, is analogous to the familiar problem on sorption from a gaseous flow [1]. The corresponding 

solution to the extraction degree of the extractable substance is well known: 
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However, it is not clear how much an application of the given solution to the polydisperse material is substantiated for 

the case when the real size-particle distribution is replaced by mean characteristics. Below we consider the indicated problem for 

the spherical particles at low Reynolds numbers when mass transfer occurs under the Stokes conditions. 

The mathematical description of the extraction process in this situation takes on the following form: 

OC___~o N 
OX I @'~ y ~ P i  Oct~ -- O, ]~ Oa~ 

~= I Oti Oil 
= - -  % (~,aoz - -  c0), aoi = ~a~, 

r x )  
C o = ( 1 - - s )  c, xl = ~  xv ' t l = ? f S i T - -  v , e0(0, t l ) = 0 ,  

% (xl, O) O, aoi (xl, O) a• ? , (I - -  s) ~ 
= = - -  , ~ i = - - ,  

8 

68~i N 

, i = 1  

(2) 

Mass transfer to the solid spherical particles streamlined by a constricted liquid flow with low Reynolds numbers and 

high Peclet numbers is considered in [2]. 

Here for the mass transfer coefficient we obtain the equation 
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Fig. 1. Dependence of extraction degree X, %, on dimensionless values of coordinate x 1 and 

time t t for e = 0.5 and the normal (a) and the exponential (b) size-particle distribution laws: 

1) x 1 = 0.5; 2) 1.0; 3) 3.0; 4) 6.0; solid curves) calculation by Eq. (1); dashed curves) calcula- 

tion by Eqs. (4), (5). 

Then the formula for coefficients ~o i becomes: 
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The solution to the problem of (2), (4) may be obtained, for example, by means of  the Laplace transformation. The 

extraction degree is expressed in this case as follows: 

X = ~ L - [  Pi% 
i=1 s(s + %) 

For i = i Eq. (5) is transformed into (1). 
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The numerical evaluation of the concrete value of X can be comparatively simply obtained by Papoulis's method [4]. It 

has been shown that the discrepancy between the results of numerical integration by (1) and the numerical handling of the 

Laplace transformation for expression (5) at i = 1 is less than one percent. 

We carried out the calculation of the extraction degree by the relations of (4), (5) for e from 0 to 0.666 and Of two 

size-particle distribution laws frequently used in practice, namely, the normal and exponential distribution laws. The quantity B 

takes on the following form: 

the normal distribution 

B 

the exponential distribution 
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The results obtained were compared with the magnitude of  the extraction degree for the monodisperse material, being 

calculated from (1) with the same values of the dimensionless variables x 1 and t 1. 

The examples of the extraction degree calculations for the normal and exponential distributions are presented in Fig. 1. 

It is shown that for both distributions the dependence of X on x I and t 1 is practically independent of e. 

For the normal distribution the error between the calculations by Eqs. (4), (5) and (1) is defined by quantity a. Howev- 

er, extraction degrees is more than 10% the error is insignificant (less than 5%), therefore, when performing engineering 

computations such error may be neglected. For example, for the curves presented in Fig. la (or = 0.333), at X > 10% the 

maximum error between the exact and approximate calculation does not exceed 5%, whereas the mean error amounts to 

1.5-2.5%. 
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For the exponential distribution the corresponding error between the calculations increases substantially and can reach 

20-25% (see Fig. lb). The exact values of the extraction degree for the polydisperse spherical material with e = 0.333 and the 

exponential distribution are given in Table 1. 

Thus, for the normal distribution law the calculation of the extraction degree without reference to polydispersity of the 

spherical particles does not lead to essential errors, while for the exponential distribution law the error may increase consider- 

ably. 

NOTATION 

x, z, coordinate along the column length and time, respectively; xl, tl, dimensionless values of the coordinate along the 

column length and time; I0, Bessel function of the imaginary-argument zero order;c,  ai, the extractable substance concentration 

in a liquid phase and in particles of diameter di; X = (ain - 57i=1N aiPi)/ain, the extraction degree; e, the volume concentration of 

particles in a column; ~o, the distribution coefficient of the extractable substance between phases; a i, the mass transfer coefficient 

for particles with diameter di; Pi, the volume fraction of particles with diameter di; v, mean liquid velocity in a column; Pe = 

vD/di, Peclet number; D, the molecular diffusion coefficient; bin, moments of the m-th-order size particle distribution; L, the 

reverse Laplace transformation; s, the parameter of the Laplace transformation carried out with respect to variable tt; e, the 

root-mean-square deviation-to-mean-random value ratio. Indices: in = initial conditions; i, index of  the particle fraction with 

diameter di, i = 1, 2, ..., N. 
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